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Wild salmon enumeration
and monitoring using deep
learning empowered
detection and tracking
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University, Burnaby, BC, Canada, 3Pacific Salmon Foundation, Salmon Watersheds Program,
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Burnaby, BC, Canada, 5Computing Science Department, Douglas College, New Westminster,
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Pacific salmon have experienced declining abundance and unpredictable

returns, yet remain vital to livelihoods, food security, and cultures of coastal

communities around the Pacific Rim, creating a need for reliable and timely

monitoring to inform sustainable fishery management. Currently, spawning

salmon abundance is often monitored with in-river video or sonar cameras.

However, reviewing video for estimates of salmon abundance from these

programs requires thousands of hours of staff time, and data are typically not

available until after the fishing season is completed. Computer vision deep

learning can enable rapid and reliable processing of data, with potentially

transformative applications in salmon population assessment and fishery

management. Working with two First Nations fishery programs in British

Columbia, Canada, we developed, trained, and tested deep learning models to

perform object detection and multi-object tracking for automated video

enumeration of salmon passing two First Nation-run weirs. We gathered and

annotated more than 500,000 frames of video data encompassing 12 species,

including seven species of anadromous salmonids, and trained models for multi-

object tracking and species detection. Our top performing model achieved a

mean average precision (mAP) of 67.6%, and species-specific mAP scores > 90%

for coho and > 80% for sockeye salmon when trained with a combined dataset of

Kitwanga and Bear Rivers’ salmon annotations. We also tested and deployed a

prototype for a real-time monitoring system that can perform computer vision

deep learning analyses on site. Computer vision models and off-grid monitoring

systems show promise for automated counting and species identification. A key

future priority will be working with stewardship practitioners and fishery
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managers to apply salmon computer vision, testing and applying edge-capable

computing solutions for in-situ analysis at remote sites, and developing tools for

independent user-led computer vision analysis by non-computer scientists.

These efforts can advance in-season monitoring and decision making to

support adaptive management of sustainable wild salmon fisheries.
KEYWORDS

computer vision, deep learning, fisheries management, in-season fishery management,
indigenous science, wild salmon
1 Introduction

Wild salmon are foundational for social-ecological systems

around the Northeastern Pacific Rim (Yoshiyama, 1999; Atlas

et al., 2021a; Carothers et al., 2021), and in an era of accelerating

climate change, salmon ecosystems are experiencing unprecedented

challenges (Kogan and Guo, 2015; Di Lorenzo and Mantua, 2016;

Frölicher and Laufk¨otter, 2018). Salmon have experienced

widespread declines in abundance and productivity, and returns

have become increasingly unpredictable (Kilduff et al., 2015;

Satterthwaite and Carlson, 2015; Dorner et al., 2018). Yet wild

Pacific salmon have persisted through multiple periods of

glaciation, are biologically equipped for rapid evolution and

recolonization, and remain capable and essential for supporting

livelihoods and food security in many places (Waples et al., 2008;

Schuster et al., 2011; Knapp et al., 2013).

The challenge of maintaining opportunities for salmon fishing

has been compounded by the predominance of mixed-stock

fisheries that harvest indiscriminately from numerous co-

migrating populations, creating substantial and often unquantified

risks to the protection and recovery of salmon-centered social-

ecological systems (Connors et al., 2019; Moore et al., 2021). This

challenge is heightened by major data gaps in monitoring of fishery

harvests and spawner abundance, and the traditionally high costs of

producing in-season information to support management, posing

significant risks to the biodiversity of wild salmon that underpin

their resilience (Price et al., 2017; Atlas et al., 2021b; [PSC CTC]

Pacific Salmon Commission Chinook Technical Committee, 2021).

This knowledge contributes to a growing recognition that terminal

and selective fisheries - those targeting individual species or

populations as they enter their river of origin - can reduce

conservation risks while providing sustainable harvest

opportunities (Freshwater et al., 2020; Tuohy et al., 2020; Moore

et al., 2021). These circumstances have therefore created a need for

monitoring, assessment, and harvest tools that support real-time

data integration for adaptive in-season management, efforts which

can bolster fishery and ecosystem resilience to boom and bust cycles

in salmon production (Schindler and Hilborn, 2015).

Computer vision, deep learning, and other artificial intelligence

(AI) programs are revolutionizing human society, enabling rapid

processing and analysis of large quantities of data, allowing data to

inform decision making in a huge variety of applications (Stone
02
et al., 2016). These tools, which have been pioneered over the last

60-years (and the past decade, in particular) by computer scientists

and the technology industry, now touch almost every part of our

everyday lives from ordering a taxi to restocking grocery store

shelves. Computer programs with the capacity to learn and adapt

their performance to a specific task are at the center of this real-time

data processing. In recent years, artificial intelligence has been

applied in a large and growing number of animal ecology and

conservation contexts (Weinstein, 2018). Increasingly, computer

vision deep learning is being applied in marine conservation and

fishery monitoring contexts (Salman et al., 2020; Khokher et al.,

2022). Yet far too often the application of these cutting-edge

computing tools have not been scoped and co-developed with

rural, remote, or historically-marginalized communities, limiting

their benefits outside of traditional economic and political centers of

power (Scheuerman et al., 2021).

Indigenous Peoples around the Pacific Rim fished for salmon

for at least 10,000 years prior to the arrival of European colonists

and developed harvest, management, and stewardship systems that

promoted widespread stability of salmon populations for millennia

(Swezey and Heizer, 1977; Campbell and Butler, 2010; Atlas et al.,

2021a). Wild salmon remain fundamental to the identity, food

security, and livelihood opportunities available to Indigenous

Peoples and other coastal people around the Pacific Rim

(Nakhshina, 2012; Earth Economics, 2021; Carothers et al., 2021).

In recent decades Indigenous People in the United States and

Canada have fought and won numerous legal and political battles

to counteract the dispossession of governance authority over their

traditional territories (e.g. US v. Oregon 1969; US v. Washington

1975; R v. Sparrow 1 S.C.R. [1075] 1990), and now play a leading

role in the monitoring and management of many natural resources

including salmon. However, given the large number of salmon

streams in many Indigenous territories, and the significant staffing

and financial demands that salmon population monitoring activities

place on small, rural Indigenous communities, there is a need for

tools and programs to support the re-emergence of Indigenous-led

monitoring and assessment programs grounded in long-standing

systems of stewardship, and a transition toward sustainable in-

season management of fishery opportunities (Gottesfeld et al., 2009;

Atlas et al., 2017; Atlas et al., 2021b).

In response to this need, we formed an interdisciplinary

collaborative team to co-develop and apply a computer vision
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model for automated identification and counting of salmon from

video generated at salmon counting weirs; river spanning fences

used to count or harvest migrating salmon. This effort brought

together computer science researchers, fishery and conservation

scientists, and Indigenous and non-Indigenous conservation

practitioners from around British Columbia with the shared goal

of automating counting and identification of salmon, trout, and

other freshwater fish from underwater videos. Here we develop and

test two computer-vision models for automated video counting of

migrating salmon: a multi object tracker (MOT) and a species

detection model, which are run in parallel to count and identify

individual salmon passing through weirs. Computer science tools

for salmon monitoring and conservation can deliver accurate and

expedited in-season processing of salmon counting videos, a task

which traditionally has required hundreds to thousands of staff

hours to complete.
2 Materials and methods

2.1 Salmon counting computer
vision model

Detecting objects in an image or video frame has traditionally

relied upon mathematical properties to detect edges and connected

objects, however these approaches did not perform well with

complex objects. With the rise of modern machine learning,

models can be created and supplied with many image samples of

the desired objects to detect, essentially training the model to detect

the same objects in new images. Deep learning is an extension of a

specific machine learning approach, whereby model architectures

are more complex with many layers, potentially requiring large

datasets of up to millions of samples and multiple days to weeks of

training to perform reliably.

In order to count migrating salmon in a video, two tasks must

be performed: species recognition and multi-object tracking.

Species recognition refers to recognizing the species of a target

fish, for example whether it is a coho (Oncorhynchus kisutch) or a

sockeye (O. nerka), and tracking refers to following individual fish

between multiple video frames to avoid over and under counting.
Frontiers in Marine Science 03
We used two different deep learning models to for these two tasks,

namely a species detector and a multi-object tracker (MOT) model,

which were trained on a large dataset of annotated salmon videos

from two ongoing monitoring projects in the Skeena River

watershed (Figure 1).
2.2 Dataset

The dataset we used to train our models consisted of 1,567

salmon videos ranging from several minutes to an hour long with

532,000 labeled frames and 15 unique species-class labels. The

initial videos were provided from an Indigenous-led weir project

on the Kitwanga River, where the Gitanyow Fisheries Authority

gathered continuous salmon video data from August to October

2019. The Kitwanga River is a tributary of the middle Skeena River,

and supports populations of sockeye, coho, pink (O. gorbuscha),

chum (O. keta), and Chinook salmon (O. tshawytscha), as well as

steelhead (O. mykiss), bull trout (Salvelinus confluentus), mountain

whitefish (Prosopium williamsoni), northern pikeminnow

(Ptychocheilus oregonensis), Pacific lamprey (Entosphenus

tridentatus), and resident rainbow trout (O. mykiss resident life

history). In addition, we differentiated jacks, males which return

after only one summer at sea, from adult coho and Chinook since

these smaller individuals have distinct size and morphological

characteristics. Videos were uploaded to a Google Drive, where

technicians worked on drawing bounding boxes around each fish

and annotating the file with their relevant information (e.g. species,

sex, absence of adipose fin indicating hatchery origin) with a tool

called the Computer Vision Annotation Tool (CVAT) (Sekachev

et al., 2020) from the OpenVINO™ Toolkit. For every annotated

video, each frame is labelled using a simple automatic interpolation

algorithm between the first and last annotated frame to reduce

manual annotation labor. This process of video annotation is time

consuming but essential for developing sufficient training

data libraries.

To increase the diversity of our training dataset, and to evaluate

the performance of the computer-vision model in a new location,

we annotated additional video data from the Bear River weir,

operated on a tributary of the Sustut River in the Upper Skeena
FIGURE 1

Salmon counting and identification pipeline. Inferencing is the application of the model to unseen data to evaluate performance.
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watershed by the Skeena Fishery Commission, in collaboration with

the GitksanWatershed Authorities and the Takla Nation. So far, the

annotated Bear River dataset consists of 123 videos (∼32,000
annotated frames), which were used for model testing and

validation. Efforts are ongoing to increase the size and diversity of

the datasets used to train the model with more annotations from

both locations, as well as other locations around the North and

Central Coast of British Columbia.

Due to the imbalance in the representation of different species

in our datasets, we opted to perform training, validation, and testing

using a stratified splitting method (Gill et al., 2004; May et al., 2010)

in a 70:15:15 ratio on the Bear Creek and Kitwanga dataset

separately, before creating a combined dataset with subsets from

both Bear and Kitwanga hereafter referred to as the Kit-Bear

dataset. Stratified splitting methods aim to distribute the dataset

with the same class proportion across all of the different subsets

(Farias et al., 2020). This method helps address imbalances in the

subsets by allowing more access to rarer object classes when random

sampling. While the dataset is separated into sequences of video

frames for each video, we opted to keep each entire sequence within

a single subset instead of allowing the video frames to split between

multiple subsets. One sequence will often show a single fish sample

with multiple frames, so splitting the frames into the validation or

test set would not be reflective of the real-world application of the

model. Splitting by sequences is also more consistent with MOT

training, as this model requires consideration of previous frames to

track individual objects across the field of view and produce a

reliable count.

We filtered the initial datasets by removing erroneous bounding

boxes and non-wide boxes that contained limited information and
Frontiers in Marine Science 04
could negatively affect the training to produce a dataset described in

Table 1. For example, some annotations with tracking bounding

boxes are vertically thin denoting salmon that had already moved

through the field of view and do not provide any information with

which to determine the species. This method also removed

annotations fitted around the head or tail while the salmon is

entering or leaving the field of view. Frames including only the head

or tail may provide useful information, however, further research

would be required to determine the distribution of the dataset.

These boxes were removed using OpenVINO™ Toolkit’s Dataset

Management Framework by filtering annotations where the width

is greater than the height of the bounding box.

We employed a splitting solution to perform stratified splitting

to keep the video frames of each sequence within the same subset.

To achieve this, we use random sampling with an algorithm to add

sequences until each category is full for each subset. We use the

distribution of the filtered dataset in Table 1 to calculate the split

ratio capacities. For small datasets, we placed one sequence of each

category into every subset before running the algorithm. This

prevents any one subset from dominating any uncommon

categories. The algorithm iteratively adds a random sampled

sequence to a subset and sums up all of the category counts until

all of the counts are full according to the distribution percentage.

For the Bear River dataset, unfortunately, only one sequence had

bull trout which was placed in the test set, so the model could not be

trained to recognize bull trout using data only from the Bear River.

Initially, video frames with no fish present negative samples

were not added to the dataset, however, during model testing we

found that having negative samples can improve the robustness of

the models. We therefore used these empty frames to provide
TABLE 1 The filtered dataset distribution with erroneous bounding boxes removed.

Species Kitwanga Bear

Annotations Percent Annotations Percent

Coho 370,062 75.24% 633 5.60%

Pink 34,293 6.97% 1622 14.34%

Chinook 25,429 5.17% 5222 46.16%

Sockeye 18,984 3.86% 2821 24.94%

Pikeminnow 14,208 2.89% 0 0.00%

Whitefish 12,887 2.62% 409 3.62%

Rainbow 5484 1.11% 0 0.00%

Bull 3328 0.68% 62 0.55%

Chum 3044 0.62% 0 0.00%

Shiner 1839 0.37% 0 0.00%

Steelhead 1642 0.33% 0 0.00%

Lamprey 474 0.10% 0 0.00%

Cutthroat 167 0.03% 0 0.00%

Jack Chinook 0 0.00% 543 4.80%

Total 491,841 – 11,312 –
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training data on negative samples (no fish present) which totaled

approximately 1 million frames. Bochkovskiy et al. (2020) and Sung

and Poggio (1998) also describe better performance when using

negative samples in model training. If negative samples are not

added, the models will sometimes conclude that empty frames

include fish, highlighting the need to include true zero detection

files in the training data.
2.3 Models

To achieve automated counting and species identification, we

created two models that serve complimentary purposes: a species

detection model and a multi-object tracker (MOT). The pipeline

shown in Figure 1 describes the simplified steps required to count

salmon from video frames. These tracking and species recognition

models leverage computer deep learning to achieve automation in

salmon counting and classification. The salmon species detection

process was evaluated on a family of You Look Only Once (YOLO)

models, namely, YOLOv4 (Bochkovskiy et al., 2020), YOLOv5

(Jocher et al., 2022), YOLOv6 (Li et al., 2022), and YOLOv7

(Wang et al., 2022a). These are a class of models that perform

object detection by locating desired objects in an image, identifying

and drawing a bounding box around them. YOLO especially aims to

provide real-time performance of more than 30-60 frames per

second (FPS) for lower powered machines. The MOT uses the

Joint Detection and Embedding (JDE) model (Wang et al., 2020)

which performs detection and tracking in a single-shot with

YOLOv3 as the backbone. Like the species detection model, JDE

draws bounding boxes around each detected object, however,

instead of identifying the species, it assigns an identifier (ID) to

each object and match the boxes to each other in each frame to track

individual objects throughout the video. Using Datumaro and

Python scripts, we extracted the video frames and combined them

with the annotations we created using CVAT and then converted

them to the necessary formats for training on these two models. The

JDE model requires an edited MOT sequences format whereas the

YOLO models require their own YOLO format.

To evaluate model performance, we used mean average

precision (mAP) scores as a metric to quantify the ability of our

models to reliably detect and identify salmon species. mAP scores

can range from 0.0-1.0 with 1.0 meaning that the model perfectly

detects all desired objects with no mislabels. mAP itself is an average

of various performance metrics that describe the accuracy of the

model against a validation or test dataset that has been withheld

from model training. For example, one of the metrics is precision

which is estimated across all detections the model has made, and

how many of them are correctly labeled. For our research team,

achieving a mAP score greater than 90% is considered the

performance threshold for implementing automated counting and

identification in a fishery management context.

We made use of each model architecture’s main code base on

GitHub and followed instructions for training custom object

detectors. We set batch size (512) and image resolution (640x640)

to be the same across all models to limit discrepancies in the

training data. We selected the model with the least complexity for
Frontiers in Marine Science 05
each version as this provides more viable performance for running

the model onsite with less powerful computing hardware.

We trained models on our Lambda Scalar server with four

A5000 graphics cards one at a time for each dataset for a maximum

of 8 hours or until the validation score stagnates or worsens. These

are the specific models and code base to perform the species

detection task: YOLOv4-tiny, YOLOv5n, YOLOv6n, and

YOLOv7n. YOLOv7 required lowering the momentum parameter

to prevent the loss from becoming NaN, terminating the training

run. After stopping the training, the best validation mAP score

checkpoints are used for the final mAP evaluation tested on the

respective test sets. Often, models on the Bear River dataset were

trained for 100-400 epochs, and the Kitwanga and Kit-Bear datasets

were trained for 20-30 epochs. An epoch denotes one full pass

through of the entire training dataset, for example, 20 epochs would

mean the model looked through or trained on the entire training

subset 20 times. These differences in training iterations are largely

due to differences in the size of each dataset.

We trained the JDE model for MOT with the samemethod as the

species detectors. Using the YOLOv3-tiny model as the backend, we

re-created the configuration file from the YOLOv4 repository to

conform with the JDE algorithm. Batch size was set to 256 and

resolution is 640x640. Like the species detector, MOT models are

trained until validation mAP scores reaches an asymptote. These final

mAP scores evaluated on the test set are then used as a performance

metric for the JDE model. The demo Python script provided in the

JDE repository can be adapted to perform a primitive counting

algorithm by checking if the tracking bounding box left or right

edge passes a certain threshold across the field of view to determine

whether that fish should be counted. We found a value of 20-30% of

the field of view to be a good threshold considering how the bounding

boxes are large due to the closeness of the salmon to the camera. To

increase robustness, the counting algorithm records the history of

tracking frames, requiring a certain number of frames before being

counted. Lowering this number can cause incorrect detections in the

background. However, increasing this detection threshold may cause

the model to miss fish that swim through the trap rapidly. We set this

number to ceil (FPS/8) or one eighth of a second as this number of

history frames captures the most fish as they moved through the

video box. For example, in a 25 FPS video, the algorithm matches 4

frames in the history to see whether this fish ID has been tracked

before and if so, that fish ID is added to the count. The direction of

movement also matters for fish counting, and we recorded only fish

swimming upstream as a positive count. Fish moving downstream

were recorded as a negative count, with the upstream direction set to

the right or the left in the camera’s field-of-view depending on the

direction of the flow.
2.4 Salmon monitoring prototype

During the summer of 2021, we built, deployed, and tested a

system for remote salmon monitoring with Fisheries and Oceans

Canada (DFO) and BC Hydro. The Coquitlam River was selected as

the site for this test given its proximity to the university campus and

the need for automated detection and notifications when salmon
frontiersin.org
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entered the Coquitlam Dam trap. Sockeye salmon are trapped and

trucked around the dam to restore their population. Previously, BC

Hydro and DFO staff periodically checked the trap to measure,

record, and transport salmon. Thus, deploying a system for

automated alerts provided an opportunity to reduce staff time

required for visiting the trap, allowing staff to visit during times

when they are certain that salmon are present.

The remote video monitoring system, shown in Figure 2 in the

most up to date configuration, initially consisted of only two

microprocessors (a Raspberry Pi 4B and a Jetson Nano), two

underwater cameras, a network switch, and a router. A Raspberry Pi

is a tiny low powered computer running a Linux-based operating

system. A Jetson Nano is Nvidia’s version of a tiny computer, and is

equipped with graphics processing capabilities, allowing the Jetson

Nano to run complex deep learning models. For underwater cameras,

we used a BARLUS 316L 2MP 1080p camera (B316L) with a 140°

2.8mm lens and a BARLUS 304 1440P 4MP camera (B304) with a 80°

3.6mm lens. The two cameras were mounted at different locations

giving both a side-view (B316L) and an overhead view (B304) of salmon

entering the trap. Both cameras performed similarly, however, B304 has

a narrower viewing angle and different aspect ratio (4:3 instead of 16:9).

Lacking easily mountable spots for the side-view, DFO fashioned a

mounting enclosure attached to the gate for the side-view camera.

These IP cameras were connected to a local network using a

network switch and router for our devices to access the cameras. The

Raspberry Pi can also be configured to provide an IP address

management (or DHCP) server, so a router may not be necessary

in future implementations. We added an SSD hard drive to the

system to gather data from the site, weekly. Duplicates of all hardware

components were purchased, allowing our team to debug software

issues in the lab and swap reconfigured microprocessors in the field.

All components were stored inside a large, well-ventilated job box to

protect it from wildlife and the elements, and to allow heat to escape.
3 Results

Across the range of computer vision models and combinations

of training data we evaluated, model-wide metrics of performance
Frontiers in Marine Science 06
(mAP score) were consistently higher when models were trained on

video data from the watershed where they were being applied

(Table 2). The 50 subscript denotes that the Intersection Over

Union (IOU) is 0.50. IOU is a threshold ranging 0.0-1.0 that

describes how much should the predicted bounding box intersect

the true annotated bounding box before being labeled as a correct

prediction. A model built using YOLOv6n and trained with

Kitwanga data achieved a model-wide mAP score of 69.4% when

tested on a subset of annotated Kitwanga River data that was

withheld from model training (test set), and training the same

model with the Kit-Bear dataset produced our highest detection

performance (70.2%) for the Kitwanga test set. By comparison, the

same model achieved a mAP score of only 3.3% when trained using

Bear River data and tested on the Kitwanga. YOLOv6n also

produced highest score result within the Bear River and Kit-Bear

test sets, achieving 60.3% and 67.6% respectively when trained with

the hybrid Kit-Bear training set. YOLOv7-tiny should provide

similar performance to YOLOv6n with greater speed (Wang

et al., 2022a), however, YOLOv7-tiny achieved a lower mAP

score. This may be due to the required momentum parameter

tweak to prevent the training from failing. Longer model training

regimes might allow YOLOv7-tiny to reach similar or better

performance to YOLOv6n, since lowering the momentum

parameter inadvertently slows changes in the model for

each iteration.

Across species, model predictive accuracy – measured by the

mAP50 score – achieved for individual species varied considerably

(Table 3), providing key insights into the potential challenges and

opportunities to automated computer vision salmon counting. The

model attained high mAP scores for the coho, sockeye, and

pikeminnow ranging from 0.8-0.9 mAP at 0.50 IOU in almost all

the models we evaluated. However, the model achieved a mAP score

of only 0.25 for pink salmon despite their relatively high prevalence

in the training dataset.

Among the four models we evaluated, the accuracy of species

detections varied, with some models achieving higher performance

in detecting anadromous salmon species that are the focus of most

video monitoring projects. YOLOv5n achieved the highest rate of

correct detections for Shiner (92%) but performed relatively poorly
FIGURE 2

A diagram of the setup of the Salmon Monitoring Prototype (left panel), which was adapted for application in the Kwakwa Lakes watershed in
partnership with the Kitasoo Xai’xais Stewardship Authority (right panel).
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among all other salmonid species, including an 84% false

classification rate for pink salmon (Figure 3A). YOLOv6n more

successfully detected coho (87%), sockeye (74%), pink (40%) and

bull trout (77%) than YOLOv5n (Figure 3B). YOLOv7n achieved

the highest performance among models for detection of coho

(90%) and Chinook (69%), and performed relatively well for

sockeye (81%), bull trout (73%) and pink salmon (40%)

(Figure 3C). Pink salmon posed particular challenges for

automated detection, the two top models assigned them

correctly in only 40% of cases, and pinks were frequently

confused for sockeye, coho and rainbow trout. Steelhead and

jack Chinook were both uncommon in our training dataset and
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were only present in one of the two river-specific training datasets

(Table 1), likely contributing to poor model performance in

detecting them. Another challenge for automated counting

stems from salmon overlapping in the video box, potentially

obscuring some individuals from detection (Figure 4).

Overlapping salmon are detected by the model except when

they fully eclipse one another. In these instances, two

overlapping fish may be detected as one, and when they

separate, tracking IDs between the two can be mixed up,

assigning the fish the wrong ID. These issues can affect species

counts by either under counting or incorrectly counting a fish that

turns back downstream through the trap.
TABLE 3 The class distribution mAP on the Kit-Bear dataset.

Class YOLOv4-tiny mAP YOLOv5n mAP YOLOv7-tiny mAP

Bull 64.8% 72.6% 76.6%

Chinook 43.5% 56.9% 60.2%

Chum 21.0% 67.0% 67.3%

Coho 87.7% 90.1% 94.5%

Jack Chinook 4.2% 11.6% 70.2%

Juvenile Salmonoid 0.0% 0.1% 0.0%

Pikeminnow 80.2% 90.3% 91.4%

Pink 47.6% 26.6% 35.8%

Rainbow 61.6% 0.1% 83.2%

Shiner 83.1% 20.9% 88.0%

Sockeye 61.8% 84.5% 83.6%

Steelhead 0.0% 61.0% 0.0%

Whitefish 56.5% 80.3% 63.3%
YOLOv6 does not break down the mAP score like the other versions, so it is not displayed.
TABLE 2 Salmon species detection performance for models trained on the Bear mAP50, Kitwanga mAP50, and combined Kit-Bear mAP50 datasets, and
tested on data withheld from each training set.

Test set Model Bear mAP50 Kit mAP50 Kit-Bear mAP50

Bear River

YOLOv4-tiny 24.9% 8.8% 15.1%

YOLOv5n
YOLOv6n

52.7%
59.4%

24.1%
18.2%

38.4%
60.3%

YOLOv7-tiny 46.2% 20.0% 49.5%

Kitwanga River

YOLOv4-tiny 3.5% 44.3% 39.2%

YOLOv5n
YOLOv6n

7%
3.3%

53.1%
69.4%

51.7%
70.2%

YOLOv7-tiny 5.6% 63.6% 65.3%

Kit-Bear

YOLOv4-tiny 4.6% 42.0% 37.8%

YOLOv5n
YOLOv6n

9.01%
6.2%

50.8%
65.7%

50.9%
67.6%

YOLOv7-tiny 7.3% 59.8% 62.6%
ThemAP column label denotes the training subset used to train each YOLOmodel, for example, Bear mAP50 denotes themAP score of eachmodel that is trained on only the Bear River training subset.
Bold font indicates the training set and model that produced the highest performance in species detection.
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BA

FIGURE 4

Overlapping Coho salmon moving through the Kitwanga River video box with true annotations in the left panels and species detection results
generated as the fish pass through the field of view in the right panels. Image batches are from the Kit-Bear dataset tested with YOLOv7-tiny. The
number next to the species label in the predicted labels is the confidence percentage.
B

C

A

FIGURE 3

Confusion matrices for their respective models trained and tested on the Kit-Bear dataset, comparing the predicted species to what is the true
annotated species. The values in the left to right diagonal of the matrix represent the species-specific performance of the model, with the y-axis
denoting the class that the model predicted and the x-axis denoting the true species class in the annotated dataset. The background label on the y-
axis refers to False Negative (FN) predictions which are all the classes the model missed detecting. The background label on the x-axis refers to
background False Positive (FP) predictions which are all the classes that the model predicted to be a fish but is actually something else (The
background in this case).
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As an early test, we ran the MOT model to count salmon on a

season’s worth of data in 2022 for the Bear River. Currently, Bear

River data are analyzed by first using the motion sensing software

SecuritySpy by Benson Software to extract video clips where the

software detects movement. These clips are then reviewed by

technicians to produce species counts. This count produced a

total run size estimate that was 91% of the estimate produced by

Skeena Fisheries Commission technical staff. Sockeye salmon in the

Bear River videos swim very quickly through the video trap, causing

the motion tracker to miss these quick movements, so we were

tasked to test the model on the continuous data to see if fast fish can

be detected. A sample is shown in Figure 5. We processed the data

on our Lambda server which took around 2-3 days for 30 days of

data. We were able to run 4 instances that on average processed at

speeds of around 140 FPS which is a total of 560 FPS. Since the

videos were recorded at 10 FPS, each hour of continuous video can

be processed in approximately 64 seconds. Initial testing showed

that for the data collected between Aug. 15th to Sept 7th, the model

counted 60% of the total expected counts, with an MOT count of

4,949 fish as opposed to the human counts of 8,239. To address the

risk of non-detections for fish passing through the box in fewer than

four frames we decreased the history threshold of the counting

algorithm to one frame and counted 7,487 fish, much closer to the

expected count.

Data from the Coquitlam River was gathered using our Salmon

Monitoring Prototype from May to October 2021, when the trap

was shut down after the salmon migration season. A total of 6,000

and 16,000 motion detected side-view and overhead clips were

gathered, respectively. The salmon species detector performed

relatively poorly due to the new environment and setup of the

Coquitlam Dam system. Cameras were mounted right next to the

trap gate, meaning that fish passed very close to the camera when

entering the trap. Accordingly, the entire length of the fish was

never visible in any single frame. Many fish also came toward the

camera, presenting a visual perspective that is extremely different

than the annotated training data from the Kitwanga River.

Regardless of the long-term utility of video monitoring at the

Coquitlam dam, this simple and relatively cost-effective

monitoring system can be built for less than $3,500 USD and has
Frontiers in Marine Science 09
already been replicated for remote video monitoring applications in

several locations in British Columbia (Figure 2).
4 Discussion

Computer-vision models hold promise for expedited delivery of

video count data by automating enumeration and species

identification. Preliminary training data annotation and model

development have demonstrated the feasibility, challenges, and

potential for automated counting in wild salmon monitoring.

Computer-vision models trained on Kitwanga and Bear River

data had a higher degree of success identifying and counting coho

and sockeye salmon, likely due to their prevalence in the training

data from both watersheds. The highest performing models

consistently detected sockeye and coho salmon, two priority

species for monitoring, in >90% of tests. By contrast pink and

Chinook salmon were particularly challenging for the species

detection models we evaluated, despite being common in both

rivers’ datasets. Pink salmon exhibit extreme sexual dimorphism,

with males developing large humps and hooked jaws during

spawning season. These differences between male and female

morphology likely pose unique challenges for automated

detection unless accounted for in future training procedures and

analysis. Chinook salmon have a higher degree of variability in their

coloration, age, size, and secondary sexual characteristics and likely

require larger quantities of training data to reach thresholds for

reliable application in salmon population monitoring (>95%).

Results from early research and testing of computer-vision

applied to video counting at salmon population monitoring weirs

shows high potential for further development and application

toward in-season monitoring. Model performance for counting

and classification for two priority species (>90%) met or exceeded

the performance of early-stage models developed by researchers

working in both salmon-specific and other marine conservation

contexts. Xu and Matzner (2018) gathered a dataset of salmon in

various dams and trained a YOLOv3 model achieving a mAP score

of 53.92%, though, salmon passed further from the camera in many

instances, posing challenges for automated identification. Kay et al.

(2022) achieved accuracy on par with human experts identifying

and counting salmon from sonar videos, but model accuracy was

challenged when applied in new environments with less available

training data. Researchers working in benthic marine ecosystems

used YOLOv2 to detect scallops using an Underwater Autonomous

Vehicle (UAV) achieving an 85% mAP score (Rasmussen et al.,

2017) with only a single target object (scallops) spread across a flat

plane. Similarly, Tan et al. (2018) estimated lobster abundance by

identifying their burrows, achieving 83% precision employing a

similar multi-stage pipeline of object detection and tracking,

however the task was made simpler by the mostly static

backgrounds and only two detection targets (burrows and

lobsters). These results and many other ongoing research and

applied science initiatives continue to advance the field of

computer-vision, building tools that can rapidly deliver high

accuracy count data to inform conservation and management.
FIGURE 5

A screenshot of the MOT model being applied to a fast-swimming
Chinook salmon in the Bear River during the 2022 season.
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Ongoing challenges related to overlapping fish and rapid

passage through the video box will require fine tuning the model

parameters but in the near-term these issues can be readily

overcome with manual checking and a larger training dataset.

One potential solution to this issue is to lower the IOU threshold

on an algorithm called non-max suppression (NMS) that is run

after detection to remove closely overlapping bounding boxes.

Lowering the threshold would allow for more overlapping boxes

if they were detected, allowing the model to count overlapping fish

more accurately. Naturally, as the model is trained longer and with

more data with instances of overlapping fish, it will become better at

detecting and counting these partially obstructed fish. However,

new experiments are underway by our research team to evaluate the

potential for an overhead camera to complement side view salmon

imaging videos, and models leveraging both camera angles could be

co-trained to produce accurate model results (Li et al., 2021).

Applying computer-vision counting models in novel

environments without site-specific training data is a challenge and

in the short-term will likely demand initial investments in training

data annotation for new monitoring locations. Video trap and data

recording equipment at the Bear River and Kitwanga were built

using identical specifications and components, but differences in

water clarity, fish coloration, morphology, and size distributions

likely created subtle differences between the data being generated at

the two sites. Models trained on Kitwanga data and tested on the

Bear River test set had consistently poor performance but

combining Kitwanga training data with Bear River data improved

mAP scores. The amount of training data required for reliable

species detection at a given location is likely influenced strongly by

the number of species present and the degree of variability in the

background environment, lighting, or water conditions. Data

augmentation, which is standard in most models including

YOLO, can help address some of these sources of variability, but

having training data encompassing the full degree of conditions

encountered in the field is better (Shorten and Khoshgoftaar, 2019).

Other researchers have tested computer-vision models and found

that models can correctly classify and count a single species of

interest with only 6,080 annotated frames (Ditria et al., 2020),

however more complex or diverse applications like salmon

counting in the Kitwanga and Bear Rivers may require training

data sets in excess of 500,000 for optimal performance. Ultimately,

achieving mAP scores exceeding 0.90 for focal species will be

required for widespread operational application of automated

counting, a high but achievable bar for model performance.

Insights from other large-scale computer-vision deep learning

projects can be used as benchmarks for datasets required to support

object detection and MOT. COCO (Lin et al., 2015) and MOT16

(Milan et al., 2016) are two well-known benchmark datasets. COCO

is a dataset of 91 classes with 2.5 million labels in over 328k images

whereas MOT16 contains pedestrians throughout 10k frames with

250k labels overall. Research using these publicly available datasets

shows with a lower number and complexity of target classes, less

training data may be needed to achieve the desired level of

performance. Improved model performance may also be achieved
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by tweaking hyperparameters (Wang et al., 2022a) such as learning

rate, momentum, and epochs. Additional adjustments to data

augmentation configurations and adding more training data,

especially of under-represented classes, can improve deep learning

models (Halevy et al., 2009; Sun et al., 2017) given the model is

sufficiently complex (Nakkiran et al., 2021). Other techniques to

tackle the imbalanced dataset include skipping frames to prevent

overfitting (Du et al., 2021), oversampling under-represented

species (Johnson and Khoshgoftaar, 2019), or weighing training

loss toward lower number classes (Alaba et al., 2022a).

Oversampling will randomly duplicate samples from under-

represented species which could in turn introduce overfitting but

increases the representation of rare species classes.

Tuning model parameters, training protocols and data libraries

will require trial and error. Thus, future efforts to advance

automated video counting for salmon escapement monitoring will

require more training data and experimentation with model tuning.

Improvements to our counting algorithm may also include

application of line-of-interest based counting (Kocamaz et al.,

2016; Kay et al., 2022; Zhao et al., 2016; Ma and Chan, 2013)

which has previously been used in manual sonar fish counting (Key

et al., 2016), as well as testing newer MOT models (Aharon et al.,

2022; Wang et al., 2022b; Zhang et al., 2022) while simultaneously

increasing the Bear River annotation dataset and adding data from

new rivers to improve accuracy and generality.

Achieving our goal of conducting real-time automated analysis

in remote riverine environments will pose new and important

challenges. The Salmon Monitoring Prototype that was built and

operated at Coquitlam dam is now being applied by Indigenous

partners at several remote video monitoring locations, providing a

template for practitioners looking to build and adapt computer-

vision salmon monitoring systems of their own. To deal with data

transfer and remote site monitoring issues we added an additional

security camera and high-speed satellite internet from Starlink to

access a data livestream of these sites in real-time (Ma et al., 2022).

However, Starlink upload speeds continue to limit the rate of data

delivery, creating a need for edge-computing compatible models

and computer hardware capable of running these models in the

field. Future research will evaluate edge-capable models that

combine both species recognition and MOT, called multi-class

multi-object trackers (MCMOT) (Lee et al., 2016; Du et al., 2021).

These models have recently been developed and tested in some

applications, but there is limited published research and code to

inform their application. However, a series of code bases have

implemented MCMOT which can inform future efforts to package

these models for edge computing (Even, 2023).

Computer vision holds immense promise for more rapid and

reliable data analysis in aquatic and terrestrial conservation

applications (Weinstein, 2018). Recent advances in deep learning,

motion tracking, and convolutional neural networks can serve as

building blocks for these tools (Salman et al., 2020; Ditria et al.,

2020; Kay et al., 2022). Automation can expedite analysis of video

collected from monitoring efforts or fishing vessels and reduce the

analytical burden on technicians to provide more rapid insights into
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fish abundance and species composition (Khokher et al., 2022;

Ditria et al., 2020; Siddiqui et al., 2018), supporting improved

conservation and fishery management outcomes (Schindler and

Hilborn, 2015). Interdisciplinary research partnerships are essential

for catalyzing development and deployment of technology in

meeting global sustainability challenges (Allan et al., 2018).

Our interdisciplinary team, comprised of university-based

computer science researchers, First Nations’ salmon stewardship

practitioners, and conservation scientists, is uniquely positioned to

bring computer vision tools to real-world applications in salmon

conservation and management. While numerous researchers have

documented the potential for automation to transform aquatic

ecosystem and fishery monitoring, delivering these tools to

practitioners will require a commitment to co-development and

testing in real-world applications. Closing the loop between

research, product testing, and real-world outcomes has never

been more urgent, both for meeting the challenges posed by

global environmental change, and for maintaining social license –

support from society at large – for research and technology

development. In a world where ecological dynamics are

increasingly defined by uncertainty and change, delivering

accurate real-time salmon count data can catalyze transformation

toward more adaptive decision making that bolsters the resilience of

salmon populations, ecosystems, and fisheries. Our findings

highlight the potential for computer vision to advance greater

sustainability in salmon fisheries, however further work will be

needed to put these tools in the hands of conservation practitioners

and fishery managers.
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